电子在导体内总是沿着阻力最小的路线流动。在导体表面及近表层的结构元与导体表面基本平行,电子在其间换位流动阻力较小。而在导体内部结构元呈上下、左右、前后空间排列,电子在其间定向流动要受到五个方向的阻力,(而在表面只有三个方向的阻力)可见电子在导体表层附近运行的阻力要比在内部小得多,这样就导致了电流的集肤效应。
其二,当电子在导线内移动时,在其运动的垂直方向伴生着磁场,(右手定则)其它电子在磁场的作用下向逐步向周边发散移动,于是移向了导线的表层附近,形成了电流的集肤效应。
其三,当然还有温度的影响:在导体内部,电阻产生的热不易散发,温度较高,价和电子运转的速率高,线路不是很扁平,这样就导致了电子通路相对窄小,电阻就高。在导体的表面,散热快、温度低,价和电子运转的速率低,线路扁平,这样就导致了电子通路相对宽大,而故导体表面电阻小,外来电子运行较快,这也是电流集肤的原因之一。 尖端放电 当导体的某部分做得很细很尖时,尖端部分的表面积相对较大,换位移动到此的电子密度相对较大,在尖端部分甚至有些拥挤,有部分电子在拥挤中从尖端溢出,于是就导致了尖端放电现象。
磁性基本现象
从「磁性来源」中我们了解到,某些原子的核外电子的自旋磁矩不能抵消,从而产生剩余的磁矩。但是,如果每个原子的磁矩仍然混乱排列,那么整个物体仍不能具有磁性。只有所以原子的磁矩沿一个方向整齐地排列,就像很多小磁铁首尾相接,才能使物体对外显示磁性,成为磁性材料。这种原子磁矩的整齐排列现象,就称为自发磁化。既然磁性材料内部存在自发磁化,那么是不是物体中所有的原子都沿一个方向排列整齐了呢?当然不是,否则,凡是钢铁等就会永远带有磁性,成为一块大磁铁,永远能够相互吸引了(实际上,两块软铁不会自己相互吸引)。事实上,磁性材料绝大多数都具有磁畴结构,使得它们没有磁化时不显示磁性。
磁畴:
所谓磁畴,是指磁性材料内部的一个个小区域,每个区域内部包含大量原子,这些原子的磁矩都像一个个小磁铁那样整齐排列,但相邻的不同区域之间原子磁矩排列的方向不同,如右图所示。各个磁畴之间的交界面称为磁畴壁。宏观物体一般总是具有很多磁畴,这样,磁畴的磁矩方向各不相同,结果相互抵消,矢量和为零,整个物体的磁矩为零,它也就不能吸引其它磁性材料。也就是说磁性材料在正常情况下并不对外显示磁性。只有当磁性材料被磁化以后,它才能对外显示出磁性。下图为在显微镜中观察到的磁性材料中常见的磁畴形状,其中左面是软磁材料常见的条形畴,黑白部分因为不同的磁畴其磁矩方向不同而具有不同的亮度,它们的交界面就是畴壁;中间是树枝状畴和畴壁;右面是薄膜材料中可以见到的磁畴形状。实际的磁性材料中,磁畴结果五花八门,如条形畴、迷宫畴、楔形畴、环形畴、树枝状畴、泡状畴等。
既然磁畴内部的磁矩排列是整齐的,那么在磁畴壁处原子磁矩又是怎样排列的呢?在畴壁的一侧,原子磁矩指向某个方向,假设在畴壁的另一侧原子磁矩方向相反。那么,在畴壁内部,原子磁矩必须成某种形式的过渡状态。实际上,畴壁由很多层原子组成。为了实现磁矩的转向,从一侧开始,每一层原子的磁矩都相对于磁畴中的磁矩方向偏转了一个角度,并且每一层的原子磁矩偏转角度逐渐增大,到另一侧时,磁矩已经完全转到和这一侧磁畴的磁矩相同的方向。上图给出了典型的磁畴壁结构示意图。
居里温度:
对于所有的磁性材料来说,并不是在任何温度下都具有磁性。一般地,磁性材料具有一个临界温度Tc,在这个温度以上,由于高温下原子的剧烈热运动,原子磁矩的排列是混乱无序的。在此温度以下,原子磁矩排列整齐,产生自发磁化,物体变成铁磁性的。
利用这个特点,人们开发出了很多控制组件。例如,我们使用的电饭锅就利用了磁性材料的居里点的特性。在电饭锅的底部中央装了一块磁铁和一块居里点为105度的磁性材料。当锅里的水分干了以后,食品的温度将从100度上升。当温度到达大约105度时,由于被磁铁吸住的磁性材料的磁性消失,磁铁就对它失去了吸力,这时磁铁和磁性材料之间的弹簧就会把它们分开,同时带动电源开关被断开,停止加热。
与磁性材料有关的常用物理量:
磁场强度:指空间某处磁场的大小,用H表示,它的单位是安/米(A/m)。
磁化强度:指材料内部单位体积的磁矩矢量和,用M表示,单位是安/米(A/m)。
磁感应强度: 磁感应强度B的定义是:B=m0(H+M),其中H和M分别是磁化强度和磁场强度,而m0是一个系数,叫做真空导磁率。磁感应强度又称为磁通密度,单位是特斯拉(T)。
导磁率:导磁率的定义是m=B/m0H,是磁化曲线(见材料的静态磁化)上任意一点上B和H的比值。导磁率实际上代表了磁性材料被磁化的容易程度,或者说是材料对外部磁场的灵敏程度。
磁性材料的静态磁化及常用性能指针:
我们已经知道,磁性材料内部具有磁畴,它们就好像众多的小磁铁混乱地堆积,整体对外没有磁性。这时我们称材料处于磁中性状态。但是,如果材料处在外加磁场的环境中,那么这些小磁铁(实际上是磁畴的磁矩)就会和磁场发生相互作用,其结果就是材料中的磁矩发生向外加磁场方向的转动,导致这些磁矩不再能相互抵消,也就是说所有磁矩的矢量和不等于零。在外加磁场的作用下,磁性材料由磁中性状态变成对外显示磁矩状态的过程称为磁化。
那么磁性材料在磁化过程中到底发生了哪些变化呢?
在磁中性状态(即没有外加磁场),材料内部的磁矩成混乱排列,总的磁矩为零,因此材料显示的磁化强度也是零。
当磁性材料处于外加磁场中时,材料内部的磁矩就会受到磁场的作用力,磁矩会向外磁场的方向转动,就像磁铁在磁场中转动一样。这时,磁矩就不再是完全混乱排列的了,而是沿外磁场方向产生了一个总的磁化强度,这时我们说材料被磁化了。并且,外磁场越大,材料内部的磁矩向外磁场方向转动的数量和程度就越多。当外磁场足够大时,材料内部所有的磁矩都会沿外磁场方向整齐排列,这时材料对外显示的磁化强度达到最大值,我们说材料被磁化到了饱和。达到饱和之后,无论怎样增大磁场,材料的磁化强度也不再增大。因此材料被磁化到饱和时的磁化强度称为饱和磁化强度,用Ms来表示。
从上面的分析,我们知道材料的磁化强度随外磁场而变化。在科学实验和生产实际中,常把磁场和磁化强度的关系画成曲线,称为磁化曲线,如图所示。其中,横坐标表示外磁场的大小,纵坐标表示磁化强度的高低。磁化曲线一般可以分成三个阶段:可逆磁化阶段、不可逆磁化阶段、饱和阶段。
在工程上,一般不用磁化强度-磁场的关系画磁化曲线,而用磁感应强度-磁场的关系画磁化曲线。这时,磁化饱和时就有一个饱和磁感应强度(或者饱和磁通密度),用Bs表示。以后,如果没有特殊说明,我们都用的是B-H磁化曲线。饱和磁感应强度是磁性材料的一个重要指标。
在磁化曲线上,每一点都有一个磁感应强度和磁场的比值,称为导磁率。在磁化的不同阶段,材料的导磁率也不同,导磁率在最高点称为最大导磁率。在磁化起始点的导磁率称为初始导磁率。导磁率是软磁材料的另一个非常重要的指标。
那么,在磁化过程中,材料内部的磁矩究竟是怎样转动的?有两种方式使材料的磁矩产生转动:一是畴壁位移:材料磁化时,畴壁内部的原子磁矩逐渐转向外磁场的方向,畴壁逐渐推移,这样,与外磁场方向接近的磁畴面积逐渐扩大,而与外磁场方向相反的磁畴逐渐缩小。这种方式一般发生在非饱和阶段。二是磁矩一致转动:在外磁场的作用下,与外磁场方向相反的磁畴中的磁矩向外磁场方向整体转动,就像磁铁转动一样。这种方式主要发生在接近饱和阶段。